福彩3d众彩网预测:
[1]杨坤,池强,李鹤,等.高钢级天然气输送管道止裂预测模型研究进展[J].石油管材与仪器,2019,5(04):9-14.[doi:10.19459/j.cnki.61-1500/te.2019.04.002]
 YANG Kun,CHI Qiang,LI He,et al.Research on the Crack Arrest Prediction Models and Their Progress for High Grade Steel of Natural Gas Pipeline[J].Petroleum Tubular Goods & Instruments,2019,5(04):9-14.[doi:10.19459/j.cnki.61-1500/te.2019.04.002]
点击复制

高钢级天然气输送管道止裂预测模型研究进展
分享到:

《石油管材与仪器》[ISSN:2096-0077/CN:61-1500/TE]

卷:
5
期数:
2019年04期
页码:
9-14
栏目:
综述
出版日期:
2019-08-20

文章信息/Info

Title:
Research on the Crack Arrest Prediction Models and Their Progress for High Grade Steel of Natural Gas Pipeline
文章编号:
2096-0077(2019)04--0009-06
作者:
杨坤池强李鹤张伟卫霍春勇
中国石油集团石油管工程技术研究院,石油管材及装备材料服役行为与结构安全国家重点实验室 陕西 西安 710077
Author(s):
YANG Kun CHI Qiang LI He ZHANG Weiwei HUO Chunyong
CNPC Tubular Goods Research Institute, State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Xi′an, Shaanxi 710077, China
关键词:
延性断裂止裂预测BTC模型能量释放率
Keywords:
ductile fracture crack arrest prediction Battelle two curves model energy release rate
分类号:
TE973
DOI:
10.19459/j.cnki.61-1500/te.2019.04.002
文献标志码:
A
摘要:
针对天然气管道延性断裂的长程扩展行为,总结了基于Battelle双曲线的止裂预测模型及其改进方法的发展,提出了基于高钢级管道能量释放率和流变应力修正后的止裂预测模型TGRC-1以及基于落锤撕裂能量的止裂预测模型TGRC-2,并对模型的计算结果进行了分析。结果表明:针对西气东输天然气组分,TGRC-1和TGRC-2的预测结果均比Battle双曲线模型(BTCM)的预测结果安全和保守,而TGRC-2模型的预测结果比TGRC-1模型的预测结果安全和保守。
Abstract:
Crack arrest prediction models and their development models based on Battelle two curves method for the ductile fracture propagation of natural gas pipeline for long distance were summarized. Moreover, two development crack arrest models, TGRC-1 and TGRC-2, which are respectively based on the energy release rate and flow stress correction of high grade steel and drop weight energy, were presented. The results of the models were analyzed. It is shown that aimed at natural gas components for Gas Transmission from West to East, the prediction results of TGRC-1 and TGRC-2 are safer and more conservative than those of BTCM, and the prediction results of TGRC-2 model are safer and more conservative than those of TGRC-1 model.

参考文献/References:

今天福彩3d黑圣手 www.qfboe.tw [1] PINEAU A,ARGON AS. Topics in fracture and fatigue. Berlin: Spinger, 1992.
[2] MAXOY WA. Fracture Initiation, Propagation and Arrest[C]. Proceedings of 5th Symposium on Line Pipe Research. 1974, AGA Catalogue no L30174, J1-J31.
[3] BEREMIN FM, NEMAT-NASSER S. Three-dimensional constitutive relations of damage and fracture. Oxford: Pergamon Press, 1981.
[4] SHIMA S, OYANE M. Int J Mech Sci 1976, 18: 285-291.
[5] PARTEDER E, RIEDEL H, SUN DZ. Int J Refrac Met Hard Mater, 2002, 20: 287-293.
[6] A.A. BENZERGA, J. BESSON, A. PINEAU. Anisotropic Ductile Fracture Part I: Experiments. Acta Materialia, 2004, 52: 4623-4638.
[7] A.A. BENZERGA, J. BESSON, A. PINEAU. Anisotropic Ductile Fracture Part II: Theory. Acta Materialia, 2004, 52: 4639-4650.
[8] G. MIRONE, D. CORALLO. Stress–strain and Ductile Fracture Characterization of an X100 Anisotropic Steel: Experiments and Modelling. Engineering Fracture Mechanics, 2013, 102: 119-145.
[9] DRUCKER DC, PRAGER W. Soil Mechanics and Plastic Analysis for Limit Design. Q Appl Math 1952,10(2): 157-65.
[10] BIGONI D, PICCOLROAZ A. Yield Criteria for Quasi Brittle and Frictional Materials. Int J Solids Struct, 2004, 41: 2 855-2 878.
[11] BAI Y, WIERZBICKIT. A New Model of Metal Plasticity and Fracture with Pressure and Lode Dependence. Int J Plast, 2007, 24: 1071-1096.
[12] BARLAT F, LEGE DJ, BREM JC. A Six-Component Yield Function for Anisotropic Materials. Int J Plast, 1991, 7: 693-712.
[13] HILL R. User-friendly Theory of Orthotropic Plasticity in Sheet Metals. Int J Mech Sci 1993, 35(1): 19-25.
[14] BRON F, BESSONJ. A Yield Function for Anisotropic Materials: Application to Aluminum Alloys. Int J Plast, 2004,20: 937-63.
[15] BRIDGMAN PW. Studies in Large Flow and Fracture. McGraw Hill, 1956.
[16] XianKui ZHU. Stateoftheart Review of Fracture Control Technology for Modern and Vintage Gas Transmission Pipelines[J]. Engineering Fracture Mechanics, 2015, 148: 260-280.
[17] Maciej WITEK. Possibilities of Using X80, X100, X120 High-Strength Steels for Onshore Gas Transmission Pipelines[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 374-384.
[18] B. N. LEIS, S. M. PIMPUTKAR, N. D. GHADIALI. Line Rupture and the Spacing of Parallel Lines[G]. Max Toch PRCI Publication, Virginia: Pipeline Research Council International, 2002.

相似文献/References:

[1]吉玲康,霍春勇,李鹤.我国高压长输天然气管道的断裂控制[J].石油管材与仪器,2016,(06):1.
 JI Lingkang,HUO Chunyong,LI He.Fracture Control for High Pressure Natural Gas Pipeline with Long Distance in China[J].Petroleum Tubular Goods & Instruments,2016,(04):1.

备注/Memo

备注/Memo:
基金项目:国家重点研发项目《油气长输管道及储运设施检验评价与安全保障技术》课题“油气管道及储运设施损伤致灾机理与演化规律” (项目编号:2016YFC0802101);中石油科学研究与技术开发项目《大口径天然气管道建设关键技术》课题“高钢级管道失效控制技术”(项目编号:2016B-3002);《公司发展战略与科技基础工作决策支持研究》课题“重点实验室/试验基地建设与运行管理”(项目编号:2107D-5006-12)。 第一作者简介:杨坤,男,1985年生,高级工程师,2013年毕业于西北工业大学材料学专业,获博士学位,现主要从事油气输送管的应用技术研究。E-mail:[email protected]
更新日期/Last Update: 2019-08-25