福彩3d最准的七码复式:
[1]童茂松,张加举,丁柱.0.2 m高分辨率双侧向测井仪器信号幅度仿真[J].石油管材与仪器,2019,5(04):19-22.[doi:10.19459/j.cnki.61-1500/te.2019.04.004]
 TONG Maosong,ZHANG Jiaju,DING Zhu.Signal Amplitude Analysis of 0.2 mverticalresolution Dual Laterolog Tool[J].Petroleum Tubular Goods & Instruments,2019,5(04):19-22.[doi:10.19459/j.cnki.61-1500/te.2019.04.004]
点击复制

0.2 m高分辨率双侧向测井仪器信号幅度仿真
分享到:

《石油管材与仪器》[ISSN:2096-0077/CN:61-1500/TE]

卷:
5
期数:
2019年04期
页码:
19-22
栏目:
开发设计
出版日期:
2019-08-20

文章信息/Info

Title:
Signal Amplitude Analysis of 0.2 mverticalresolution Dual Laterolog Tool
文章编号:
2096-0077(2019)04--0019-04
作者:
童茂松张加举丁柱
中国石油集团测井有限公司大庆分公司 黑龙江 大庆 163412
Author(s):
TONG Maosong ZHANG Jiaju DING Zhu
China Petroleum Logging Co. Ltd., Daqing Branch, Daqing, Heilongjiang 163412,China
关键词:
0.2 m高分辨率双侧向测井数值模拟电路仿真数字聚焦
Keywords:
0.2 mverticalresolution dual laterolog numeric simulation circuit simulation digital focusing
分类号:
P631.4+3
DOI:
10.19459/j.cnki.61-1500/te.2019.04.004
文献标志码:
A
摘要:
为解决油田勘探开发后期薄层评价需求与测井仪器纵向分辨率低的矛盾,需要开发统一分辨率达到0.2 m的高分辨率测井系列,尤其是作为主力装备的高分辨率双侧向测井仪器。采用数字聚焦技术实现高分辨率双侧向测量,通过数值模拟技术与电路仿真技术相结合的方法,研究0.2 m高分辨率双侧向测井仪器的探测特性与不同地层条件下的测量信号幅度,指导仪器实现。设计的双侧向测井仪器纵向分辨率达到0.2 m,深浅侧向的探测深度分别达到1.45 m和0.46 m,该仪器在高阻层(2 000 .m)的信号幅度低至微伏级,对测量电路提出了更高的要求。根据数值模拟与电路仿真结果,开发的0.2 m高分辨率双侧向测井仪器在大庆油田和吉林油田已经应用300多口井,为薄层及薄互层评价提供了可信的资料。
Abstract:
In order to solve the contradiction between the requirement of thin layer evaluation and low vertical resolution of logging tools in the later stage of oil field exploration and development, it is necessary to develop high resolution logging tools with uniform resolution up to 0.2 m, especially the dual laterolog tool as the main equipment. High resolution dual laterolog is realized by digital focusing technology. The detection characteristics of 0.2 m high resolution dual laterolog and the measured signal amplitude under different formation conditions are studied by combining numerical simulation technology with circuit simulation technology to guide the realization of the instrument. Results show that the vertical resolution of the designed dual laterolog tool is 0.2 m, the investigation depth of deep and shallow laterolog is 145 m and 0.46 m, respectively. The signal amplitude of the tool in high resistivity layer (2 000.m) is low to microvolt level, which puts forward higher requirements for measuring circuit. According to the results of numerical simulation and circuit simulation, the developed 0.2 m high resolution dual laterolog tool has been applied in more than 300 wells in Daqing Oilfield and Jilin Oilfield, providing credible information for thin layer evaluation.

参考文献/References:

今天福彩3d黑圣手 www.qfboe.tw [1] 安丰全,唐炼,?;?,等.利用常规测井资料进行薄层评价[J]. 石油学报,1994,15(4):1-8.
[2] 陶宏根.超薄层(0.2m)测井技术研究[D]. 长春:吉林大学,2012.
[3] FENG W L,JING W X,TONG M S,et al.High-resolution Logging Technologies of Daqing Oil Field.Technical papers for 2010 CNPC international wellbore technology seminar[C], Beijing: Petroleum Industry Press.
[4] 郭兴钢.井壁取心资料在油层水淹解释中的应用[J]. 大庆石油地质与开发,2008,27(5):74-77.
[5] 赵延文,聂在平.双侧向电阻率测井反演算法研究[J]. 地球物理学报,1998,41(3):424-430.
[6] 丁柱,邓刚,马恩军,等.高分辨率双侧向测井仪[J]. 测井技术,2002,26(4):531-533.
[7] 史謌,何涛,仵岳奇,等.用正演数值计算方法开展双侧向测井对裂缝的响应研究[J]. 地球物理学报,2004,47(2):359-363.
[8] 谭茂金,高杰,邹友龙,等.盐水泥浆条件下定向井双侧向测井环境校正方法研究[J]. 地球物理学报,2012,54(2):1422-1432.
[9] 丁柱,杨长春,李剑浩,等.高分辨率双侧向测井仪理论设计的新方法[J]. 大庆石油地质与开发, 2002,21(1):75-76.
[10] 钮宏,赵养真,区广宇.高分辨率双侧向测井仪的影响因素分析[J]. 测井技术,2010,34(1):98-102.
[11] 王昌学,王亚杰,储昭坦,等.一种高分辨率双侧向测井仪[J]. 测井技术,2003,27(1):72-74.
[12] 王恒,李建平,王爱英,等.高分辨率双侧向测井仪的应用[J]. 石油仪器,2007,21(3):27-28.
[13] 朱军,冯琳伟.高分辨率双侧向测井响应数值模拟分析[J]. 石油地球物理勘探,2007,42(4):457-462.
[14] 童茂松,宋建华.0.2m分辨率双侧向测井仪器数值模拟[J]. 地球物理学进展,2014,29(05) :2251-2257.
[15] 曹扬,孙东利,张连成,等.双侧向仪器地层仿真校验系统设计[J]. 国外测井技术,2016,37(1) :56-59

相似文献/References:

[1]邓茜珊,丁庆荣.抽油杆运动对高分辨率电导含水率计测量持水率影响的数值模拟分析[J].石油管材与仪器,2017,3(01):80.[doi:10.19459/j.cnki.61-1500/te.2017.01.019]
 DENG Xishan,DING Qingrong.Numerical Simulation Analysis on Influences of Sucker Rod Morement on WaterHoldup Measurement with the Highresolution Conductance Watercut Meter[J].Petroleum Tubular Goods & Instruments,2017,3(04):80.[doi:10.19459/j.cnki.61-1500/te.2017.01.019]
[2]邓茜珊.近水平DN 20仿仪器流道数值模拟分析[J].石油管材与仪器,2017,3(04):96.[doi:10.19459/j.cnki.61-1500/te.2017.04.025]
 DENG Xishan.Numerical Simulation of Nearhorizontal DN 20 Flow Channel in Simulation Instruments[J].Petroleum Tubular Goods & Instruments,2017,3(04):96.[doi:10.19459/j.cnki.61-1500/te.2017.04.025]
[3]姜兆宇,杨韵桐.双级分流伞气液分离装置的设计及数值模拟[J].石油管材与仪器,2018,4(04):12.[doi:10.19459/j.cnki.61-1500/te.2018.04.003]
 JIANG Zhaoyu,YANG Yuntong.Design and Numerical Simulation of Doublegrade Gasliquid Separator[J].Petroleum Tubular Goods & Instruments,2018,4(04):12.[doi:10.19459/j.cnki.61-1500/te.2018.04.003]
[4]姚池.脉冲中子测井仪BGO探测器响应函数数值模拟研究[J].石油管材与仪器,2018,4(04):28.[doi:10.19459/j.cnki.61-1500/te.2018.04.007]
 YAO Chi.Numerical Simulation Research on Influence Factors of BGO Detector Response in Pulse Neutron Logging Tool[J].Petroleum Tubular Goods & Instruments,2018,4(04):28.[doi:10.19459/j.cnki.61-1500/te.2018.04.007]
[5]于其明.磨料射流喷嘴磨损规律的研究[J].石油管材与仪器,2018,4(05):40.[doi:10.19459/j.cnki.61-1500/te.2018.05.012]
 YU Qiming.Nozzle Wear Rule Research of Abrasive Water Jet[J].Petroleum Tubular Goods & Instruments,2018,4(04):40.[doi:10.19459/j.cnki.61-1500/te.2018.05.012]
[6]杨韵桐.低产液高含水油气水三相流气液分离装置设计及分离效率研究[J].石油管材与仪器,2019,5(03):6.[doi:10.19459/j.cnki.61-1500/te.2019.03.002]
 YANG Yuntong.Design of Gasliquid Separation Device for Lowyield Liquid and Highwatercut Oilgaswater Threephase Flow and Separation Efficiency Study[J].Petroleum Tubular Goods & Instruments,2019,5(04):6.[doi:10.19459/j.cnki.61-1500/te.2019.03.002]
[7]王倩.基于数值模拟的T型管道流场参数正交优化[J].石油管材与仪器,2019,5(01):55.[doi:10.19459/j.cnki.61-1500/te.2019.01.014]
 WANG Qian.Orthogonal Optimization of Flow Field Parameters for TPipe Based on Numerical Simulation[J].Petroleum Tubular Goods & Instruments,2019,5(04):55.[doi:10.19459/j.cnki.61-1500/te.2019.01.014]

备注/Memo

备注/Memo:
基金项目:大庆油田有限责任公司重大科技专项“0.2 m高分辨率水淹层测井技术研究”(项目编号:dqc-2012-cs-ky-003)。 第一作者简介:童茂松,男,1971年生,高级工程师,2001年毕业于吉林大学微电子学与固体电子学专业,博士(后),主要从事测井方法研究与仪器研发。E-mail: [email protected]
更新日期/Last Update: 2019-08-25